Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters
نویسندگان
چکیده
Multi-drug resistance of pathogenic microorganisms is becoming a serious threat, particularly to immunocompromised populations. The high mortality of systematic fungal infections necessitates novel antifungal drugs and therapies. Unfortunately, with traditional drug discovery approaches, only echinocandins was approved by FDA as a new class of antifungals in the past two decades. Drug efflux is one of the major contributors to multi-drug resistance, the modulator of drug efflux pumps is considered as one of the keys to conquer multi-drug resistance. In this study, we combined structure-based virtual screening and whole-cell based mechanism study, identified a natural product, beauvericin (BEA) as a drug efflux pump modulator, which can reverse the multi-drug resistant phenotype of Candida albicans by specifically blocking the ATP-binding cassette (ABC) transporters; meantime, BEA alone has fungicidal activity in vitro by elevating intracellular calcium and reactive oxygen species (ROS). It was further demonstrated by histopathological study that BEA synergizes with a sub-therapeutic dose of ketoconazole (KTC) and could cure the murine model of disseminated candidiasis. Toxicity evaluation of BEA, including acute toxicity test, Ames test, and hERG (human ether-à-go-go-related gene) test promised that BEA can be harnessed for treatment of candidiasis, especially the candidiasis caused by ABC overexpressed multi-drug resistant C. albicans.
منابع مشابه
Detection of inhibitors of Candida albicans Cdr transporters using a diS-C3(3) fluorescence
Candida albicans is a major cause of opportunistic and life-threatening, systemic fungal infections. Hence new antifungal agents, as well as new methods to treat fungal infections, are still needed. The application of inhibitors of drug-efflux pumps may increase the susceptibility of C. albicans to drugs. We developed a new fluorescence method that allows the in vivo activity evaluation of comp...
متن کاملFunctionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans
Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modula...
متن کاملChemosensitization of multidrug resistant Candida albicans by the oxathiolone fused chalcone derivatives
Three structurally related oxathiolone fused chalcone derivatives appeared effective chemosensitizers, able to restore in part sensitivity to fluconazole of multidrug-resistant C. albicans strains. Compound 21 effectively chemosensitized cells resistant due to the overexpression of the MDR1 gene, compound 6 reduced resistance of cells overexpressing the ABC-type drug transporters CDR1/CDR2 and ...
متن کامل[Pleiotropic drug resistance ABC transporters in fungi].
Overexpression of pleiotropic drug resistance (PDR) efflux pumps of the ATP-binding cassette (ABC) transporter superfamily is the major cause of fungal multi-drug resistance and decreased efficacy of antifungal drugs. This review focused on recent progresses in understanding of the PDR efflux pumps of ABC transporter superfamily in Saccharomyces cerevisiae and the fungal pathogens Candida albic...
متن کاملCurcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals.
Curcumin (CUR), a natural product of turmeric, from rhizomes of Curcuma longa, is a known agent of reversal of drug resistance phenotypes in cancer cells overexpressing ATP-binding cassette (ABC) transporters, viz., ABCB1, ABCG2, and ABCC1. In the present study, we evaluated whether CUR could also modulate multidrug transporters of yeasts that belong either to the ABC family or to the major fac...
متن کامل